

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA
CAMPUS DI FORLÌ

West Nile, Dengue ed altri virus trasmessi da artropodi

Vittorio Sambri

DIMEC – UOC Microbiologia

DiMeLabeT - AUSL Romagna – vittorio.sambri@unibo.it

Agenda

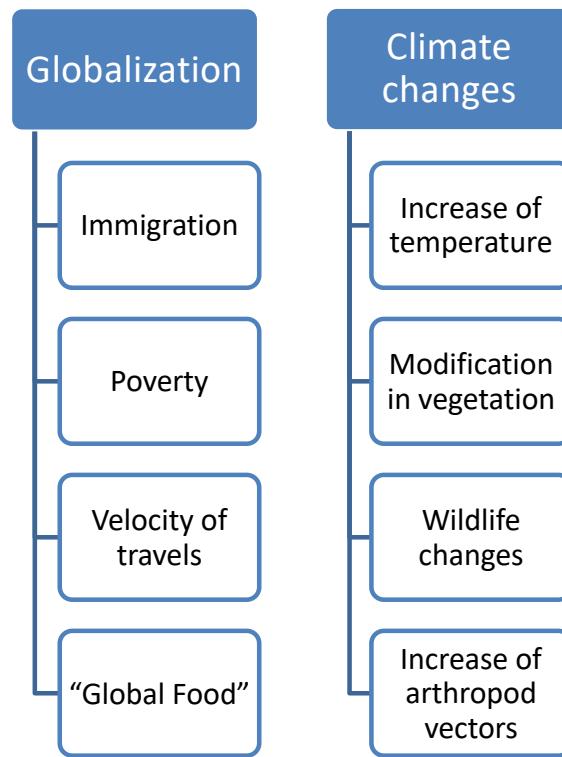
- Virus & arthropods
- West Nile virus (WNV)
- Dengue virus (DENV)
- Toscana virus (TOSV)

What Are Arboviruses

- ARBOvirus = ARthropod-BOrne virus
- Viruses transmitted by blood-feeding arthropods (mosquitoes, ticks, sandflies...)
- They can infect humans, arthropods and animals (mammalian & birds)

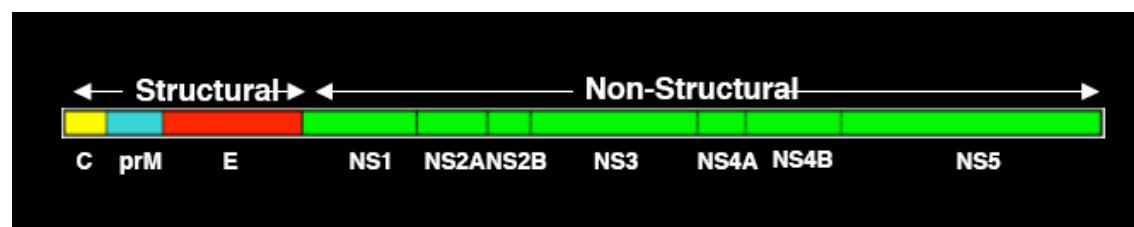
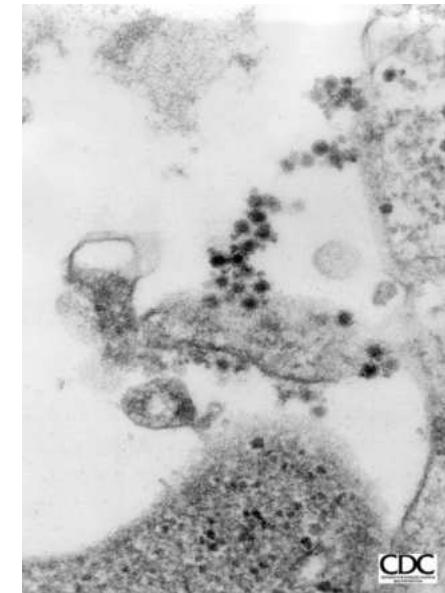
Transmission Cycle

- Arthropod vector becomes infected by feeding on an infected host
- The virus replicates within the vector
- Vector transmits the virus to a new host via bite
- Important: there is often a reservoir host (birds, Non human primates)

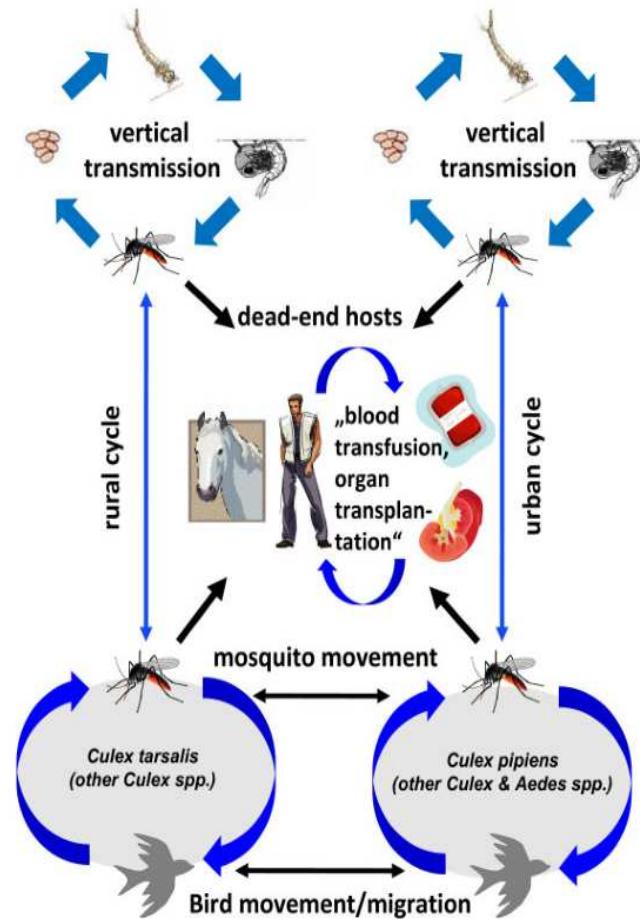


Main Arbovirus Families

- Flaviviridae (**Dengue**, Zika, Japanese Encephalitis, Tick Borne Encephalitis, Yellow Fever, **West Nile**)
- Togaviridae (Chikungunya)
- Bunyaviridae (**Toscana virus**, La Crosse)
- Reoviridae (Bluetongue virus in animals)

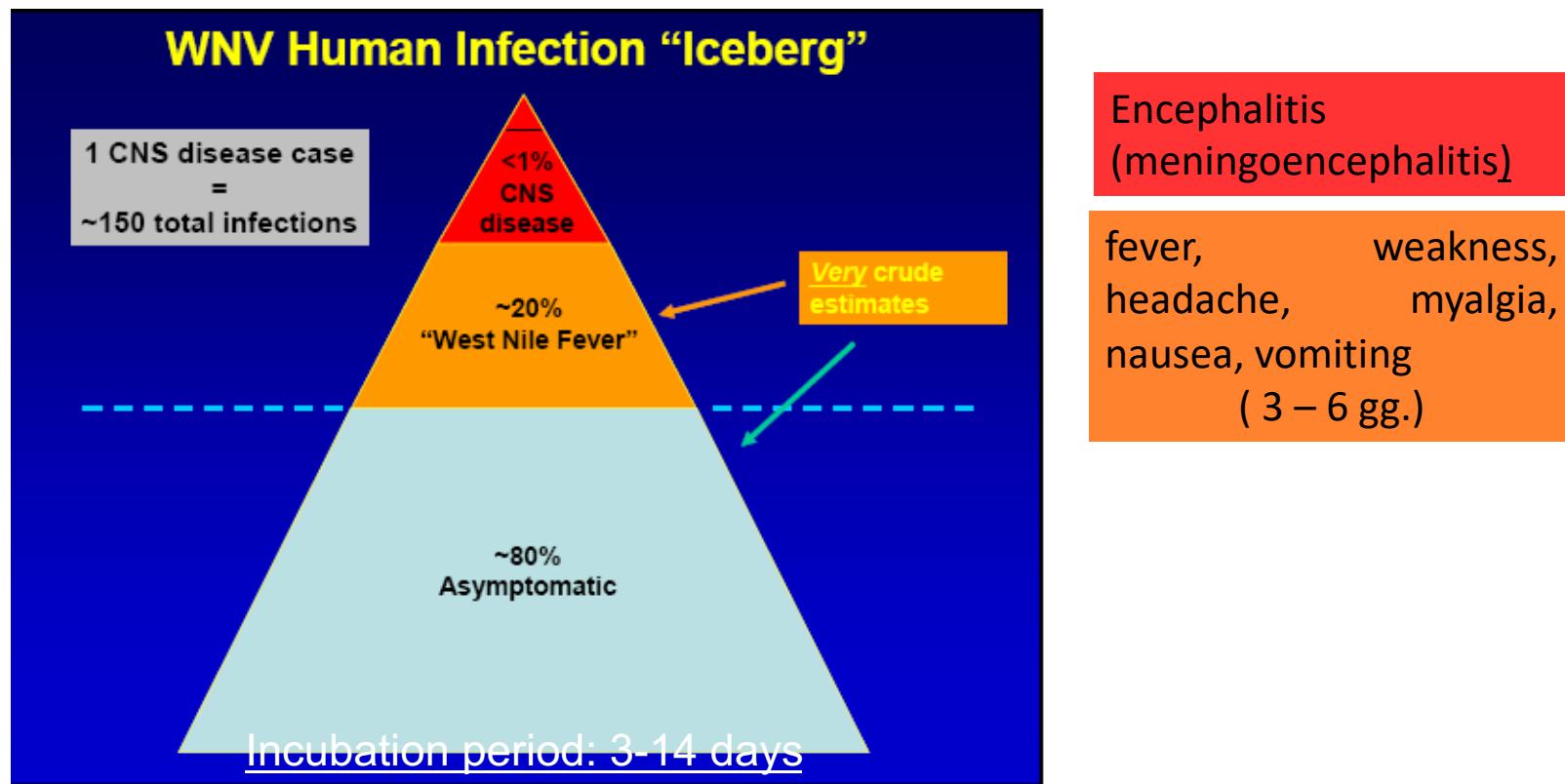
What is causing ArBo infections?



West Nile Virus (WNV)

- *Flaviviridae (Flavivirus)*
- ss (+) RNA
- Virion (spherical shape), 40-50 nm
- *envelope* (proteins **E** and **prM**)
- Capsid (protein **C**) 20-30 nm)

West Nile Cycle


TABLE 1

Overview of West Nile virus lineages and suggested lineage numbering

Suggested lineage numbering	Other lineage labelling in the literature	Representative strain	GenBank accession number	Note	Reference
Lineage 1a	Lineage 1	NY99-flamingo382-99, New York, 1999	AF196835	Most widespread WNV lineage	Lanciotti et al., 1999 [115]
Lineage 1b	Lineage 1	Kunjin MRM61C, Australia, 1960	D00246	Kunjin virus strains, Australia	Coia et al., 1988 [116]
Lineage 1c	Lineage 5	804994, India 1980	DQ256376	Only found in India	Bondre et al., 2007 [117]
Lineage 2	No	B956, Uganda 1937 (oldest WNV strain; WNV prototype strain)	AY532665	Second most widespread WNV lineage	Smithburn et. al, 1940 [118]
Lineage 3	No	Rabensburg virus 97-103, Czech Republic 1997	AY765264	Only found in central Europe	Bakonyi et al. [6]
Lineage 4a	Lineage 4	LEIV-Krnd88-190, Russia 1998	AY277251	Originally isolated from Dermacentor ticks	Lvov et al. [7]
Lineage 4b	Lineage 6 / Lineage 7	HU2925/06, Spain	GU047875	Only partial sequence available	Vázquez et al. [8]
Lineage 4c	Lineage 9	WNV-Uu-LN-AT-2013, Austria 2013	KJ831223	Identified in Uranotaenia mosquitoes	Pachler et al. [9]
Lineage 5	Lineage 6	Kunjin virus KUN MP502-66, Malaysia 1966	GU047874, HQ840762	Only partial sequences available	Vázquez et al. [8]
Lineage 6	Lineage 7	Dak Ar D 5443, Senegal	EUo82200	Koutango virus	NA
Lineage 7	Lineage 8	ArD94343, Senegal 1992	KJ131502	Only partial sequence available	Fall et al. [10]

Rizzoli A, Jiménez-Clavero MA, Barzon L, Cordioli P, Figuerola J, Koraka P, Martina B, Moreno A, Nowotny N, Pardigon N, Sanders N, Ulbert S, Tenorio A. The challenge of West Nile virus in Europe: knowledge gaps and research priorities. Euro Surveill. 2015;20(20):pii=21135. Available online: <http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=21135>.

Clinical Epidemiology of WNV infection in humans

Diagnosis of West Nile Virus Human Infections: Overview and Proposal of Diagnostic Protocols Considering the Results of External Quality Assessment Studies

V. Sambri et al.

Viruses **2013**, *5*, 2329-2348;

Clinical Issue (biological sample)	Suggested laboratory tools
Diagnosis of patients with suspected WNV infection: neuroinvasive disease and WNV fever (serum and/or plasma, whole blood, CSF, urine).	It is advisable to prioritize the order of the tests as follows: MAC-EIA, Indirect IgG EIA, IF, virus isolation, RT-PCR, Real time RT-PCR, PRNT ₉₀
Evaluation of seroprevalence (serum and/or plasma)	PRNT ₅₀ ; Indirect IgG EIA, IF; Epitope blocking EIA
Screening of blood and organ donations (serum or plasma)	NATs [MAC-EIA and IF (IgG and IgM) are suggested to perform the serologic follow up of the NATs positive donors and as early additional testing in case of not confirmed NAT positivity]
Post-mortem evaluation (tissue biopsy)	Immunohistochemistry

Legend (as of 20 November 2024)

- Human infections reported
- Newly affected regions in comparison with the previous week
- No infections reported
- Not included

Countries not viewable in the main map extent

Malta Liechtenstein

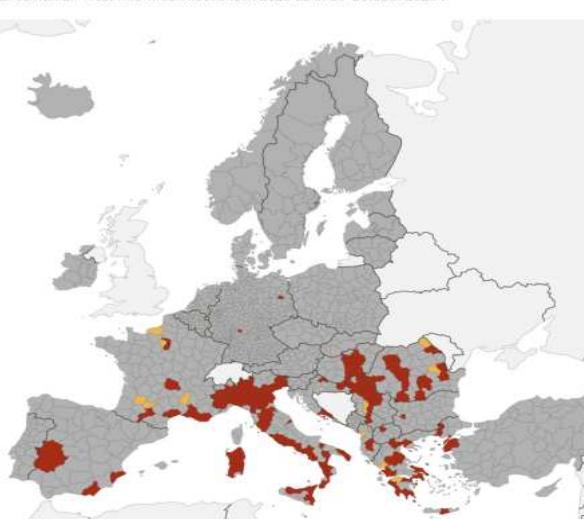
Affected EU Outermost Regions not viewable in the map extent

Guadeloupe

Geographical distribution

Figure 1. Distribution of locally acquired human West Nile virus infections in 2025 as of 29 October 2025.

West Nile virus infection


- Confirmed cases reported
- Probable cases reported
- No cases reported

Not included

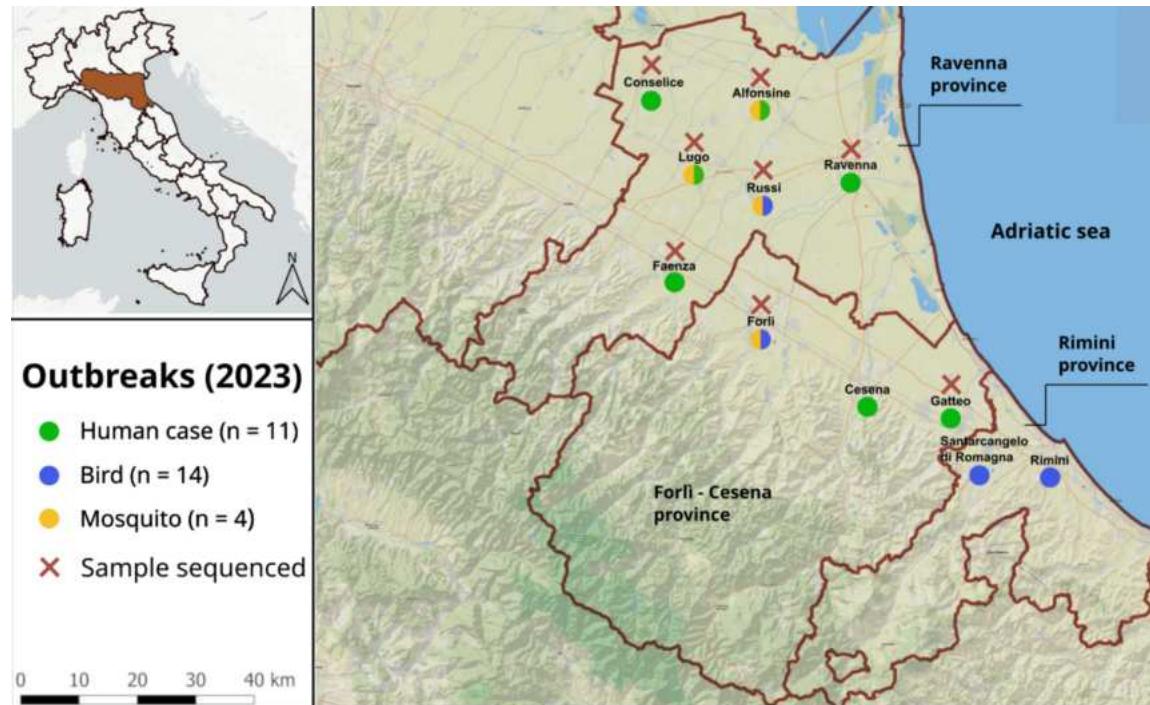
Countries not visible at the current scale

Liechtenstein

Malta

<https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc>

Table 81: Summary of WNV infection statistics related to humans, birds and equids, in the EU, 2016–2020


	2020	2019 ^(a)	2018 ^(a)	2017 ^(a)	2016 ^(a)	Data source
Humans						
Total number of confirmed and probable cases	325	443	1,615	208	240	ECDC
Total number of confirmed and probable cases/100,000 population (notification rates)	0.07	0.08	0.31	0.05	0.06	ECDC
Number of reporting MS	26	27	27	26	26	ECDC
Infection acquired in the EU	323	435	1,573	205	228	ECDC
Infection acquired outside the EU	2	5	29	2	3	ECDC
Unknown travel status or unknown country of infection	0	3	13	1	9	ECDC
Animals						

EU One Health Zoonoses Report 2020

Advancing West Nile virus monitoring through whole genome sequencing:
Insights from a One Health genomic surveillance study in Romagna (Italy)

Martina Brandolini ^{a,b,*}, Alessandra Mistral De Pascali ^{a,b,1}, Irene Zaghi ^a, Giorgio Dirani ^a,
Silvia Zanolli ^a, Ludovica Ingletto ^b, Antonio Lavazza ^c, Davide Lelli ^c, Michele Dottori ^c,
Mattia Calzolari ^c, Massimiliano Guerra ^c, Carlo Biagietti ^d, Francesco Cristini ^c, Paolo Bassi ^f,
Rino Biguzzi ^e, Monica Cricca ^{a,b}, Alessandra Scagliarini ^b, Vittorio Sambri ^{a,b}

Fig. 1. Map of geo-localization sites of recorded WNV infections. In 2023, a total of 29 cases of WNV were detected in the Romagna region. These cases comprised 11 human cases (green dots on the map), 14 bird cases (blue dots), and 4 sites with WNV-positive mosquitoes (yellow dots). The primary hotspot for WNV was Ravenna province, where 9 human cases, 3 bird cases, and 3 mosquito cases were reported. Additionally, WNV circulation was observed in Forli-Cesena province (2 human cases, 7 bird cases, 1 site with WNV-positive mosquitoes) and Rimini province (4 bird cases). Samples sequenced in this study are marked on the map with a red cross. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Advancing West Nile virus monitoring through whole genome sequencing:
Insights from a One Health genomic surveillance study in Romagna (Italy)

Martina Brandolini ^{a,b,*}, Alessandra Mistral De Pascali ^{a,b,1}, Irene Zaghi ^a, Giorgio Dirani ^a,
Silvia Zanolli ^a, Ludovica Ingletto ^b, Antonio Lavazza ^c, Davide Lelli ^c, Michele Dottori ^c,
Mattia Calzolari ^c, Massimiliano Guerra ^c, Carlo Biagietti ^d, Francesco Cristini ^c, Paolo Bassi ^f,
Rino Biguzzi ^e, Monica Cricca ^{a,b}, Alessandra Scagliarini ^b, Vittorio Sambri ^{a,b}

Table 1

Whole genome sequencing results. Results of WNV-positive human and animal samples and cell culture isolates sequencing by fragmentation and hybrid-capture target enrichment using Illumina RNA Prep with Enrichment Fragmentation protocol with Viral Surveillance Panel oligos.

Sample ID	Municipality of origin (province)	Collection date	Sample matrix	RT-PCR Ct value	WNV lineage	Total number of reads	Number of WNV reads	% of WNV mapped reads	Coverage %	Mean depth	Sequence length
LU_300723	Lugo (RA)	30 Jul 2023	urine	26	2	11.117.638	90.207	0.8	99.6	420	10.920
LU_130823	Conselice (RA)	31 Aug 2023	CSF	36	2	1.840.980	166.470	9.0	98.8	77	10.841
			Vero E6 isolate	8.53	2	19.827.442	19.214.209	96.9	99.9	32.869	10.956
RA_180823	Ravenna (RA)	18 Aug 2023	urine	25.04	2	15.278.922	12.343.939	80.8	100	13.906	10.963
FA_010923	Faenza (RA)	1 Sep 2023	urine	31.41	2	1.987.836	21.385	1.1	99.8	126	10.936
FA_240823	Faenza (RA)	24 Aug 2023	Vero E6 isolate	9.08	2	11.651.273	10.937.191	93.9	100	24.971	10.995
CE_040923	Gatteo (FC)	4 Sep 2023	Vero E6 isolate	6.79	2	8.117.842	7.545.500	92.9	100	19.404	10.959
RA_040923	Russi (RA)	4 Sep 2023	urine	30.45	2	5.807.664	342.927	5.9	99	91	10.849
			Vero E6 isolate	7.07	2	12.176.029	11.601.017	95.3	100	25.823	10.957
Cx. <i>pipiens</i> _241,729	Forlì (FC)	3 Aug 2023	homogenate	24.58	2	11.666.237	4.938.263	42.3	99.9	5.129	10.955
Cx. <i>pipiens</i> _246,218	Russi (RA)	8 Aug 2023	homogenate	24.27	2	6.144.291	637.647	10.4	99.8	459	10.937
Cx. <i>pipiens</i> _261,861	Alfonsine (RA)	24 Aug 2023	homogenate	28.41	2	10.921.464	285.682	1.1	99.6	348	10.914
P.pica_248,896-6	Russi (RA)	10 Aug 2023	homogenate	29.35	2	7.385.939	80.153	2.6	99	136	10.853

CSF = cerebrospinal fluid.

Advancing West Nile virus monitoring through whole genome sequencing: Insights from a One Health genomic surveillance study in Romagna (Italy)

Martina Brandolini^{a,b,*}, Alessandra Mistral De Pascali^{a,b,1}, Irene Zaghi^a, Giorgio Dirani^a, Silvia Zanolli^a, Ludovica Ingletto^b, Antonio Lavazza^c, Davide Lelli^c, Michele Dottori^c, Mattia Calzolari^c, Massimiliano Guerra^c, Carlo Biagietti^d, Francesco Cristini^d, Paolo Bassi^f, Rino Biguzzi^e, Monica Cricca^{a,b}, Alessandra Scagliarini^b, Vittorio Sambri^{a,b}

Table 2

Percentage nucleotide and amino acid identity. Identities were determined among sequenced samples and against WNV lineage 2 reference sequence (n reference sequence accession no. NC_001563.2, amino acid reference sequence accession no. NP_041724.2). Percentage nucleotide identity is reported in type and highlighted in orange on the left side; amino acid identity is reported in italics and highlighted in green.

	NC_001563.2	LU_300723	LU_130823	RA_180823	FA_010923	FA_240823	CE_040923	RA_040923	Cx.pipiens_241729	Cx.pipiens_246218	Cx.pipiens_261861	
aminoacid												
NP_041724.2		99	99	99	99.03	99	98.97	99	99	99	98.94	96
LU_300723	97.26		100	100	99.97	99.94	99.97	100	99.88	99.94	99.94	96
LU_130823	97.26	99.96		100	99.97	99.94	99.97	100	99.88	99.94	99.94	96
RA_180823	97.3	99.89	99.89		99.97	99.94	99.97	100	99.88	99.94	99.94	96
FA_010923	97.4	99.83	99.83	99.88		99.97	99.94	99.97	99.85	99.91	99.91	96
FA_240823	97.42	99.79	99.79	99.84	99.85		99.91	99.94	99.82	99.88	99.88	96
CE_040923	97.25	99.93	99.95	99.89	99.82	99.79		99.97	99.85	99.91	99.91	96
RA_040923	97.26	99.96	99.96	99.89	99.83	99.79	99.95		99.88	99.94	99.94	96
Cx.pipiens_241729	97.18	99.8	99.82	99.76	99.69	99.66	99.81	99.82		99.88	99.82	96
Cx.pipiens_246218	97.25	99.82	99.82	99.78	99.71	99.68	99.81	99.82	99.74		99.88	96
Cx.pipiens_261861	97.25	99.93	99.93	99.89	99.82	99.79	99.82	99.83	99.79	99.81		96
P.pica_248896-6	97.29	99.74	99.79	99.76	99.72	99.73	99.74	99.66	99.88	99.73		
nucleotide												
NP_041724.2		99	99	99	99.03	99	98.97	99	99	99	98.94	96
LU_300723	97.26		100	100	99.97	99.94	99.97	100	99.88	99.94	99.94	96
LU_130823	97.26	99.96		100	99.97	99.94	99.97	100	99.88	99.94	99.94	96
RA_180823	97.3	99.89	99.89		99.97	99.94	99.97	100	99.88	99.94	99.94	96
FA_010923	97.4	99.83	99.83	99.88		99.97	99.94	99.97	99.85	99.91	99.91	96
FA_240823	97.42	99.79	99.79	99.84	99.85		99.91	99.94	99.82	99.88	99.88	96
CE_040923	97.25	99.93	99.95	99.89	99.82	99.79		99.97	99.85	99.91	99.91	96
RA_040923	97.26	99.96	99.96	99.89	99.83	99.79	99.95		99.88	99.94	99.94	96
Cx.pipiens_241729	97.18	99.8	99.82	99.76	99.69	99.66	99.81	99.82		99.88	99.82	96
Cx.pipiens_246218	97.25	99.82	99.82	99.78	99.71	99.68	99.81	99.82	99.74		99.88	96
Cx.pipiens_261861	97.25	99.93	99.93	99.89	99.82	99.79	99.82	99.83	99.79	99.81		96
P.pica_248896-6	97.29	99.74	99.79	99.76	99.72	99.73	99.74	99.66	99.88	99.73		

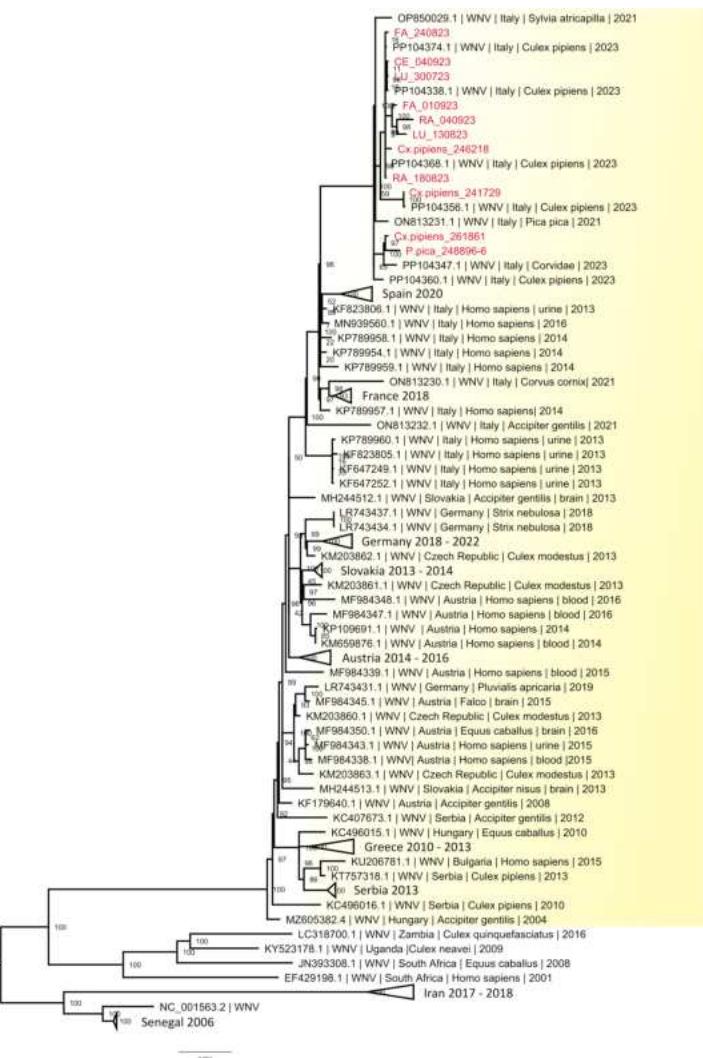
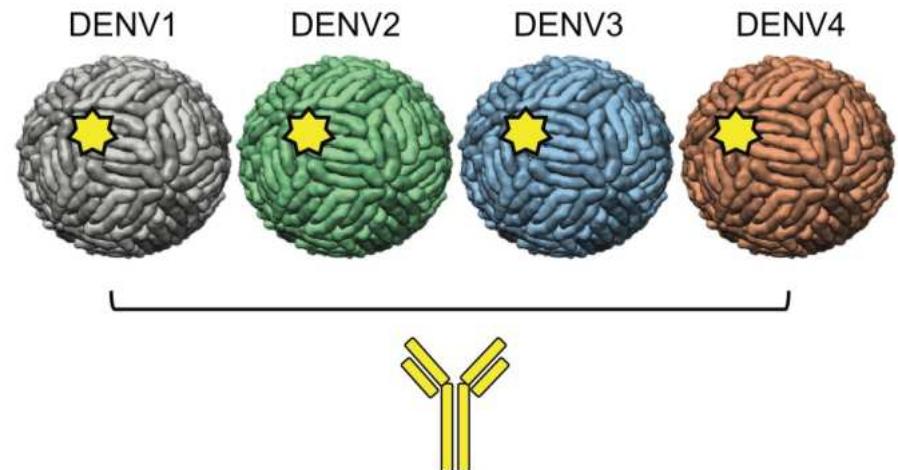


Fig. 2. Phylogenetic analysis of (nearly) complete genome nucleotide sequence of WNV lineage 2. The maximum-likelihood tree was inferred using IQ-TREE v.2.0.3, under automated model selection (GTR + F + G4) and 1000 bootstrap replicates. The viruses sequenced in this study are marked in red (n = 11 samples). GenBank accession numbers are indicated for each strain, with country, host, and year of isolation. Background shading distinguishes the Central-Southern European clade. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Causative agent of Dengue

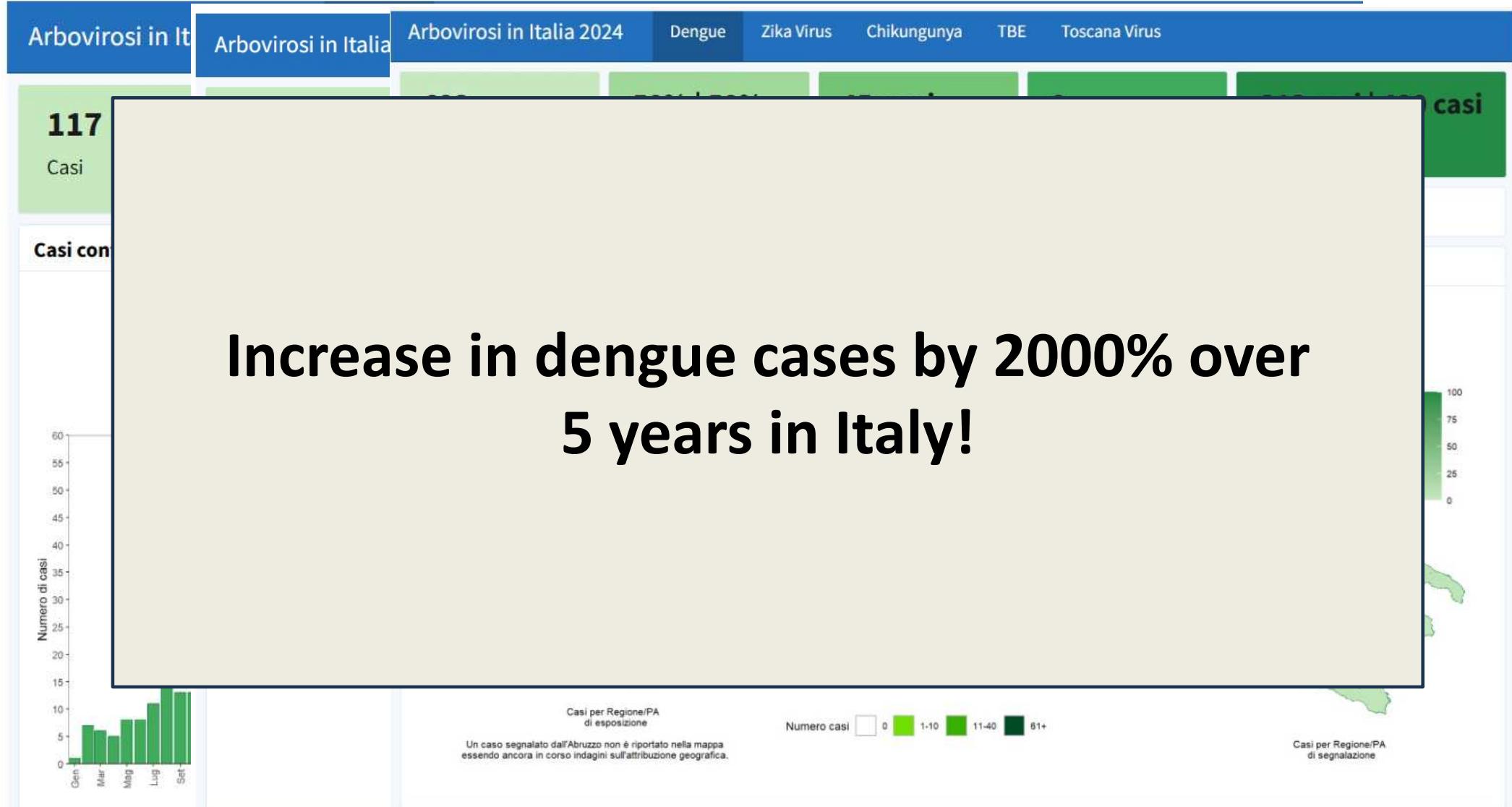
- RNA Virus
- Dengue virus is a member of the viral family of Flaviviridae composed of a single-strand RNA (11000 bp)
- It is an arbovirus transmitted by mosquitoes



Dengue virus

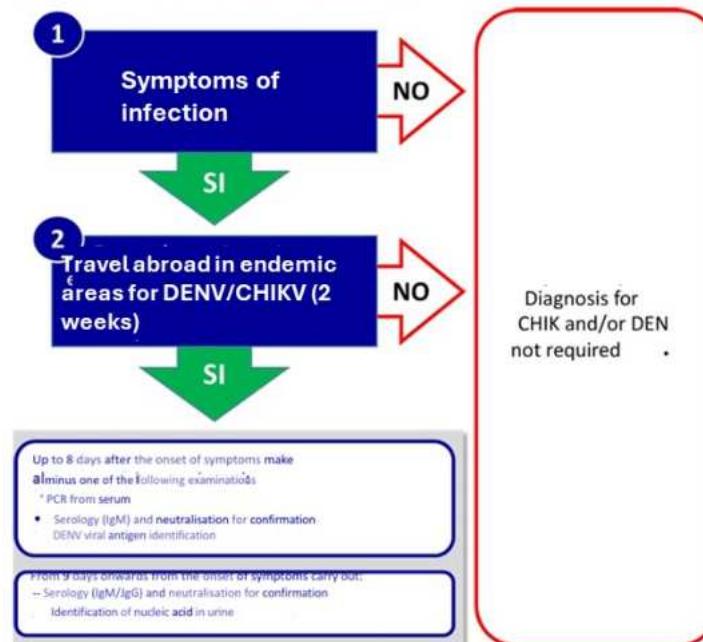

- 4 serotypes (DEN-1,2,3,4)

Each serotype provides specific lifetime immunity, and short-term cross-immunity


- All serotypes are cause of severe and fatal disease
- Genetic variation within serotypes
- Some genetic variant within each serotype appear to be more virulent or have greater epidemic potential

Clinical manifestations

Cases of Dengue in Italy 2022-2024



Epidemiological data of Dengue in Emilia Romagna

	2020	2021	2022	2023	2024
Imported	6	3	20	43	62
Autochtonous	0	0	0	0	36

Algorithms for laboratory investigation of suspected cases of Chikungunya, Dengue, Zika, TBE
 (Annex 15 - National Arbovirosis Plan 2020 - 2025)

Algorithm for laboratory investigation of suspected cases of Chikungunya and Dengue.

Area Bollettini / n.94 del 28.03.2024 (Parte Seconda)

Approvazione del Piano regionale di sorveglianza e controllo delle arbovirosi - anno 2024

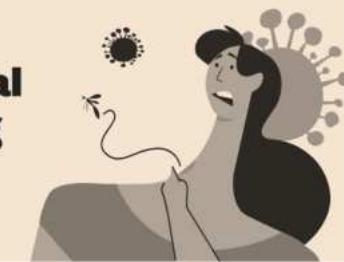
Proposed methodology

Human Health

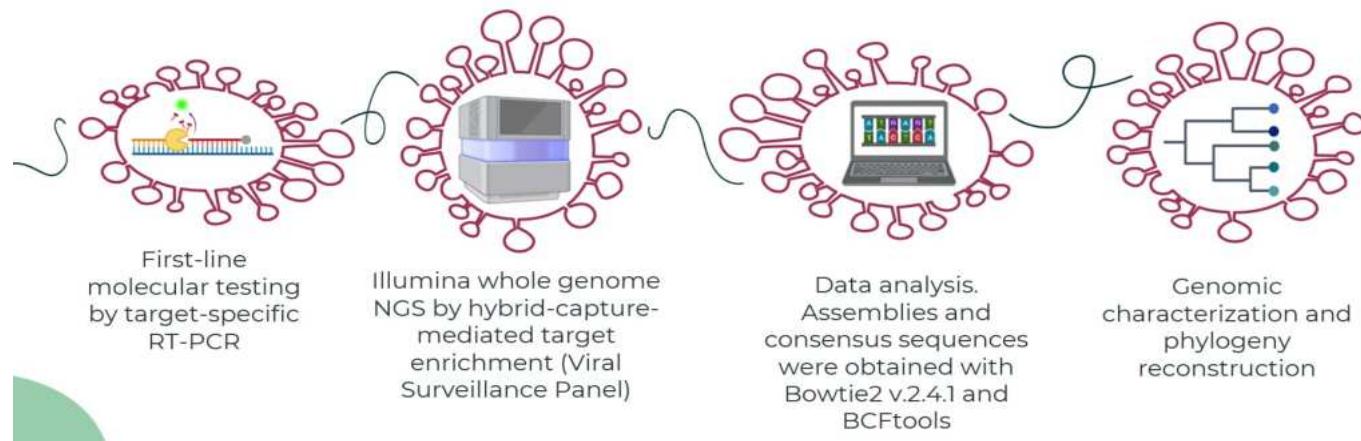
Effective monitoring of human cases of arbovirus infections requires problem awareness and is crucial to identify outbreaks, track disease trends, and implement appropriate public health interventions.

Animal Health

Surveillance animal populations for arbovirus infections is critical to understand the role of animals in transmission, identify potential sources of infection for humans and to track virus dispersal.


Environmental Health

Monitoring environmental variables potentially influencing vectors dispersal and ecology is essential for targeted risk assessment and mitigation.


Laboratory activity of Microbiology Unit of the Greater Romagna Area Hub Laboratory 2/2

One-Health Genomic Surveillance Plan Proposal for Arboviruses Tracking and Control

		Human surveillance	Reservoir/hosts and vectors surveillance
Who?		Physicians Infectious Diseases wards (AUSL Romagna Hospitals)	Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna
How?		Romagna Ethical Committee approval (C.ARBO.SEQ)	Regional entomological and veterinary surveillance plan
What?		<p>Patients enrollment Inclusion criteria: Encephalitis/meningitis cases of suspected Arboviral origin</p> <p>Collection of biological samples: urine, blood, CSF</p>	<p>Collection of: - Mosquitoes pools - Samples from birds target species (active and passive surveillance)</p>

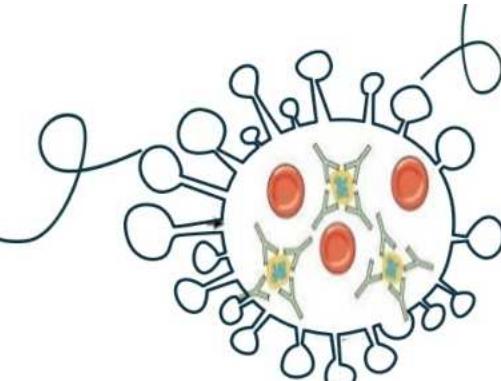
Laboratory activity of Microbiology Unit of the Greater Romagna Area Hub Laboratory 1/2

**Seroprevalence of
anti-Dengue Virus
IgG antibodies in
healthy blood donors
in Romagna**

Finanziato
dall'Unione europea
NextGenerationEU

Ministero
dell'Università
e della Ricerca

**1 among 465 individuals enrolled (0,02%):
DENV POSITIVE (recent travel to Costa Rica)**


Enrollment of 465 healthy blood donors
from Romagna

Screening for detection of IgG anti-
Dengue virus using ELISA

Confirmation of positivity using
Immunofluorescence

Identification of DENV serotype using
Sero Neutralization Assay

Centro Regionale Sangue Emilia
Romagna,
(Dr. Rino Bugazzi)

Unità Operativa Microbiologia AUSL
della Romagna

(Prof. Vittorio Sambri)

Unità Operativa Microbiologia AUSL
della Romagna

(Prof. Vittorio Sambri)

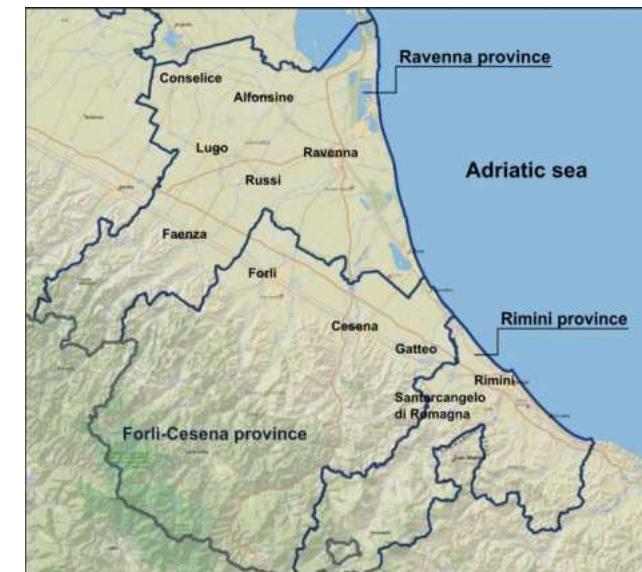
Unità Operativa Microbiologia AUSL
della Romagna

(Prof. Vittorio Sambri)

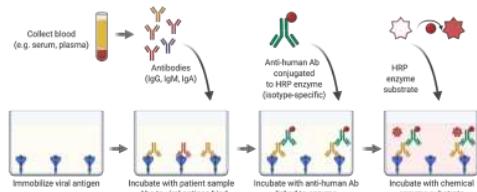
Results 1/3: Enrollment

17 April 2024

How?


**Centro Regionale Sangue Emilia Romagna,
Romagna area**

Who?


465 healthy blood donors

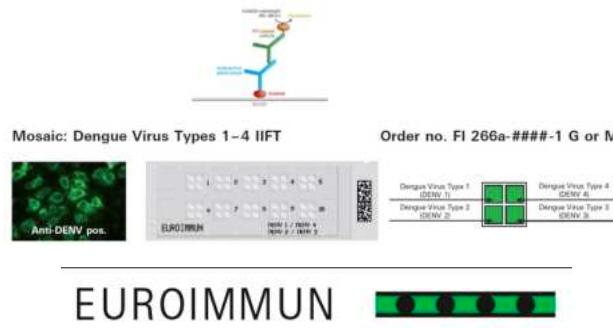
222 female (48%)
228 male (49%)
Unknown (3%)
Age range: 18-65
Mean age: 38

10 November 2024

Results 2/4: Screening using ELISA commercial kit

SERION ELISA classic
Dengue Virus IgG/IgM

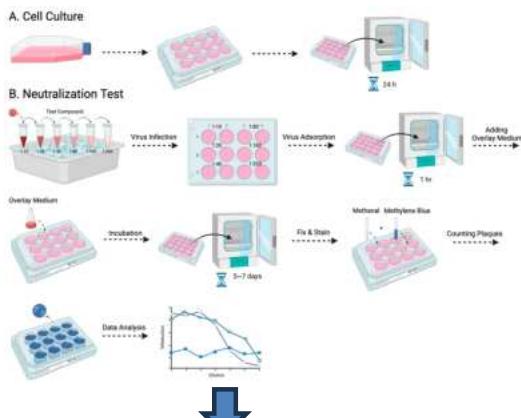
serion\diagnostics
Your Partner in Infectious Serology


12/465 (2,6%) IgG POSITIVE

**7 Female (58%)
5 Male (42%)**

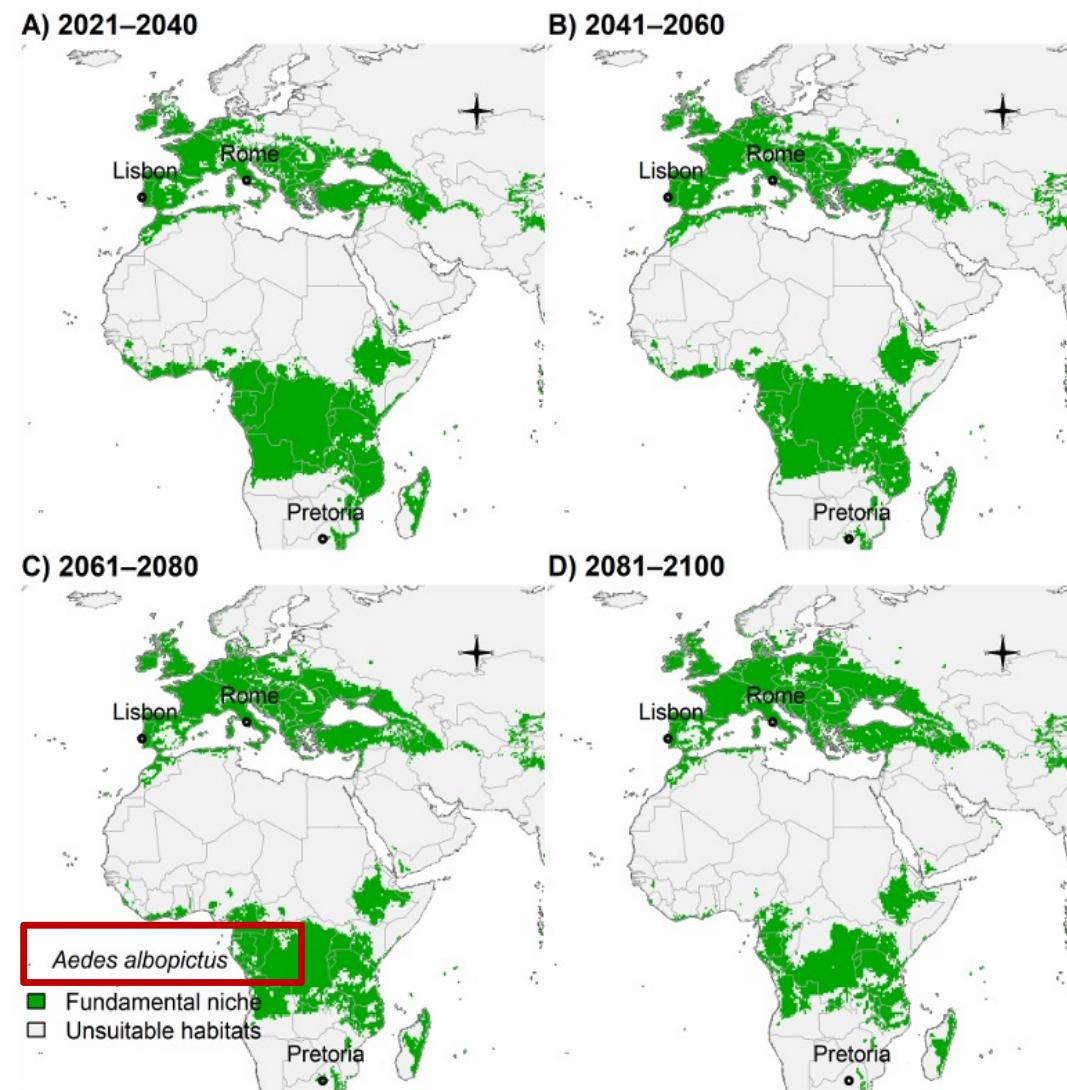
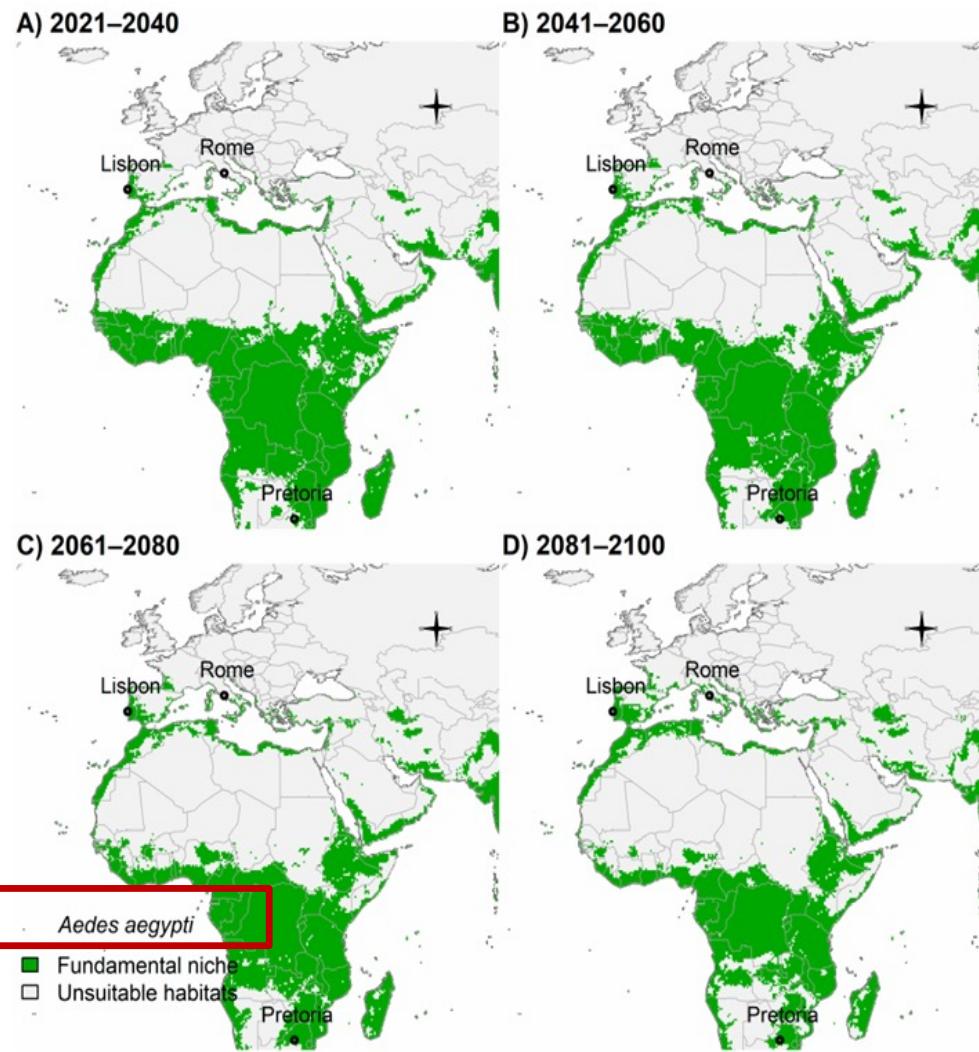
Province	Sex	Age	Country of birth	Recent travels	Symptoms	ELISA IgG titre AU/ml
FC	M	39	ITALY	NO	NO	57.9
RA	F	36	ITALY	NO	NO	15.3
RA	M	54	SPAIN	NO	NO	32.8
RI	F	25	BRAZIL	YES (?)	NO	23.1
RA	M	55	ITALY	YES (COSTA RICA)	NO	16.8
RI	M	31	ITALY		NO	20.4
RA	F	31	ITALY	NO	NO	17
FC	F	39	ITALY	NO	NO	16.9
FC	F	37	ITALY	NO	NO	20.5
RA	M	24	ITALY	NO	NO	21.3
FC	F	25	ITALY	NO	NO	29.5
FC	F	21	ITALY	NO	NO	16.1

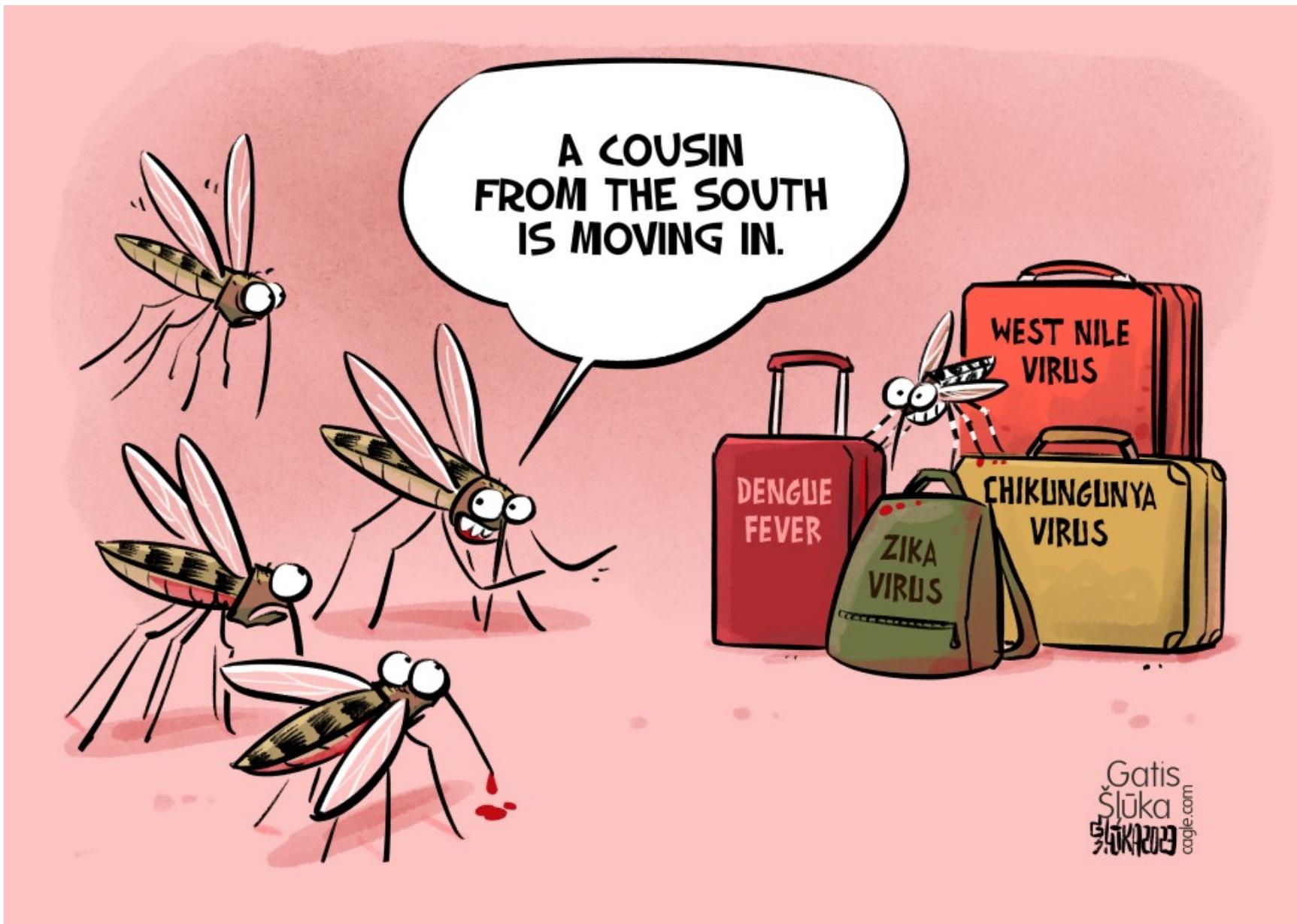
Results 3/4: Confirmation using Immunofluorescence


1/12 among 465 individuals enrolled
WNV POSITIVE

**1/12 among 465 individuals enrolled (0,2%):
DENV POSITIVE**

Province	Sex	Age	Country of birth	Recent travels	Symptom s	ELISA IgG titre AU/ml	IFA ARBOVIRUS MOSAIC
FC	M	39	ITALY	NO	NO	57.9	WNV
RA	F	36	ITALY	NO	NO	15.3	NEG
RA	M	54	SPAIN	NO	NO	32.8	NEG
RI	F	25	BRAZIL	YES (?)	NO	23.1	NEG
RA	M	55	ITALY	YES (COSTA RICA)	NO	16.8	DENV 2 OR 3
RI	M	31	ITALY	NO	NO	20.4	NEG
RA	F	31	ITALY	NO	NO	17	NEG
FC	F	39	ITALY	NO	NO	16.9	NEG
FC	F	37	ITALY	NO	NO	20.5	NEG
RA	M	24	ITALY	NO	NO	21.3	NEG
FC	F	25	ITALY	NO	NO	29.5	NEG
FC	F	21	ITALY	NO	NO	16.1	NEG



Results 4/4: Confirmation using seroneutralization assay



**1/12 among 465 individuals enrolled
(0,02%):
DENV POSITIVE**

Province	Sex	Age	Country of birth	Recent travels	Symptoms	ELISA IgG titre AU/ml	IFA ARBOVIRUS MOSAIC	Sero neutralization
FC	M	39	ITALY	NO	NO	57.9	WNV	WNV
RA	F	36	ITALY	NO	NO	15.3	NEG	NEG
RA	M	54	SPAIN	NO	NO	32.8	NEG	NEG
RI	F	25	BRAZIL	YES (?)	NO	23.1	NEG	NEG
RA	M	55	ITALY	YES (COSTA RICA)	NO	16.8	DENV 2 OR 3	DENV 2 OR 3
RI	M	31	ITALY	NO	NO	20.4	NEG	NEG
RA	F	31	ITALY	NO	NO	17	NEG	NEG
FC	F	39	ITALY	NO	NO	16.9	NEG	NEG
FC	F	37	ITALY	NO	NO	20.5	NEG	NEG
RA	M	24	ITALY	NO	NO	21.3	NEG	NEG
FC	F	25	ITALY	NO	NO	29.5	NEG	NEG
FC	F	21	ITALY	NO	NO	16.1	NEG	NEG

General Overview TOSV

- TOSV = Toscana Virus
- Family: *Bunyaviridae*
- Genus: *Phlebovirus*
- Enveloped, segmented (3: L, M and S) negative-sense RNA virus
- First identified in Italy in the 1970s by Paola Verani at ISS

Prevention and Distribution

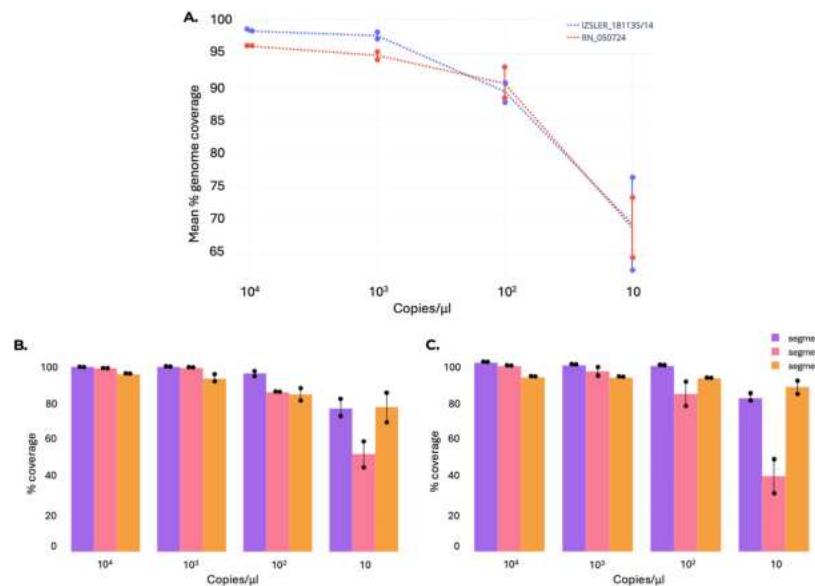
- No vaccine available
- Prevention based on vector control and personal protection (repellents, bed nets)
- Mainly found in:
 - - Italy, Spain, France, Cyprus, Greece
- Reported in European travelers returning from endemic areas

Clinical Features

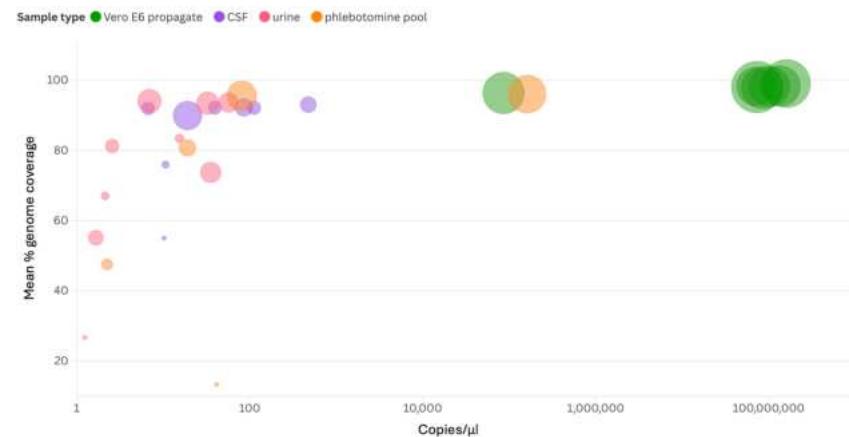
- Most infections are asymptomatic or mild
- When symptomatic:
 - - Fever
 - - Viral meningitis
 - - Meningoencephalitis (mainly in young adults)
- Usually self-limiting, but severe cases can occur

Vectors and Transmission

- Transmitted by sandflies (*Phlebotomus* spp.), especially *P. perniciosus* and *P. perfiliewi*
- Zoonotic cycle not well understood; humans are accidental hosts
- Active during summer months
- No human-to-human transmission documented



<https://doi.org/10.1038/s42003-025-08159-9>


Development of a novel amplicon based whole-genome sequencing framework for improved surveillance of Toscana virus

Check for updates

Martina Brandolini ^{1,2}, Ludovica Ingleto ², Giorgio Dirani ¹, Silvia Zannoli ¹, Andreea Maria Lapusneanu ¹, Massimiliano Guerra ¹, Alessandra Mistral De Pascali ^{1,2}, Davide Lelli ³, Francesco Defilippo ³, Antonio Lavazza ³, Mattia Calzolari ³, Michele Dottori ³, Laura Dionisi ², Claudia Colosimo ², Giulia Gatti ^{1,2}, Anna Marzucco ¹, Maria Sofia Montanari ^{1,2}, Laura Grumiro ^{1,2}, Monica Cricca ^{1,2}, Alessandra Scagliarini ² & Vittorio Sambrì ^{1,2}

Fig. 2 | Graphical representation of mean % coverage and segment % coverage across dilutions. A Comparison of mean percentage genome coverage at varying RNA input concentrations (copies/μL) for two TOSV isolates, IZSLER_181135/14 (blue) and RN_050724 (red), with error bars representing standard deviation. Percentage genome coverage of TOSV segments (L, M, S) across varying RNA input

Fig. 3 | Correlation between viral genome copies/μL and mean percentage genome coverage across different sample types (Vero E6 propagates, CSF, urine, and phlebotomine pools). The size of the circles represents sequencing depth, highlighting the relationship between viral load (indicated by copies/μL), sequencing performance (mean genome coverage), and consensus sequence reliability (depth). Higher viral loads are associated with higher coverage and sequencing depth, with

Vero E6 samples consistently achieving near-complete coverage. Variability is observed in clinical (CSF and urine) and vector (phlebotomine pool) samples, reflecting differences in matrix complexity and RNA quality, leading to different sequencing outputs. Vero E6 propagates are represented in green, CSF samples are represented in purple, urine samples are represented in pink, and phlebotomine are represented in orange.

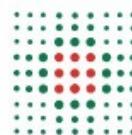
--

31/10/2025 - Casi di arbovirosi in Italia: i dati al 28 ottobre 2025

Dal 1 gennaio al 28 ottobre 2025 al sistema di sorveglianza nazionale – coordinato dall'ISS – risultano: 419 casi confermati di Chikungunya (49 casi associati a viaggi all'estero e 370 casi autoctoni, nessun decesso. Sono stati identificati 5 episodi di trasmissione locale del virus Chikungunya in Emilia-Romagna, Veneto e Toscana, di cui 2 consistenti in un caso sporadico ciascuno e 3 rappresentati da focolai); 182 casi confermati di Dengue (178 casi associati a viaggi all'estero e 4 casi autoctoni, nessun decesso. Sono stati identificati due eventi distinti di trasmissione locale del virus Dengue in Emilia-Romagna e Veneto, considerati ormai conclusi); 4 casi di Zika virus (tutti importati, nessun decesso); 48 casi di TBE (45 casi autoctoni e 3 casi associati a viaggi all'estero, con un decesso); 105 casi di Toscana virus (104 casi autoctoni e 1 caso associato a viaggio all'estero, con un decesso). Per maggiori informazioni sui dati consulta la [dashboard](#). Per i dati sulle infezioni da West Nile e Usutu virus consulta la [pagina dedicata](#). Consulta anche la pagina generale dedicata alla [sorveglianza nazionale e ai bollettini periodici](#).

Grazie a tutti colleghi/Istituzioni che hanno collaborato

ISTITUTO ZOOPROFILATTICO
Sperimentale della Lombardia e
dell'Emilia Romagna
"BRUNO UBERTINI"



EVD-LabNet

CINECA

DEPARTMENT OF
MEDICAL AND SURGICAL SCIENCES

Azienda Unità Sanitaria Locale
della Romagna

UNIB-OH
One Health International Study Centre


Regione Emilia-Romagna

Fondazione
INF-ACT

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA
CAMPUS DI FORLÌ

